Module 5 Evaluating and presenting results

DAV-6300-1: Experimental Optimization

Review: LLN, CLT, A/B Testing

- As $N \to \infty$
 - LLN: $\mu \to E[y]$, estimate approaches "true" BM
 - CLT: $\mu \sim \mathcal{N}(E[y], VAR[y]/N)$, normal, narrows w/N
- . Design: $N \ge \left(\frac{2.5\hat{\sigma}_{\delta}}{PS}\right)^2$
- Measure: Randomize, $\delta = \mu_B \mu_{A'}$, $se = \sigma_\delta/\sqrt{N}$
- . Analyze: If $\delta > PS$ and $\frac{\delta}{se} \geq 1.64$, then accept B.

Review: False Positive Traps

- Don't stop early, even if t-stat looks good
- Beware multiple comparisons in A/B/C/... tests
 - Use Bonferroni correction: p = 0.05 / (K-1)
 - . Then accept if: $\mu > PS$ and $t = \frac{\delta}{se} \geq 1.64$

Where have we used the iid assumption so far in this class?

Standard Errors

- Poorly-estimated se will ruin an experiment
- Usually *se* gets underestimated:

. Thus,
$$t = \frac{\delta}{se} \ge 1.64$$
, t is overestimated

Generates false positives

Standard Errors

• iid - independent, identically distributed

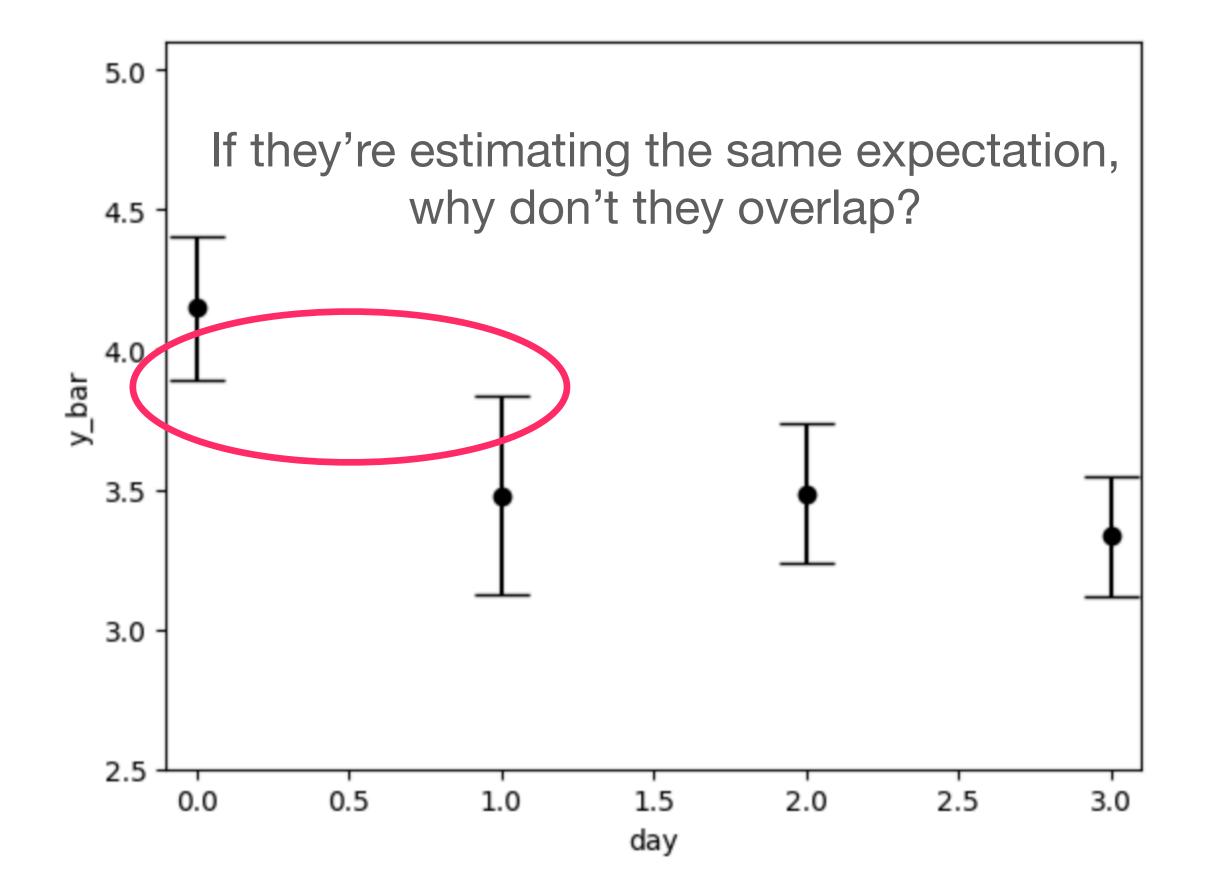
. Ex,
$$\sigma^2 = \frac{\sum_i^N (y_i - \bar{y})^2}{N}$$
 assumes

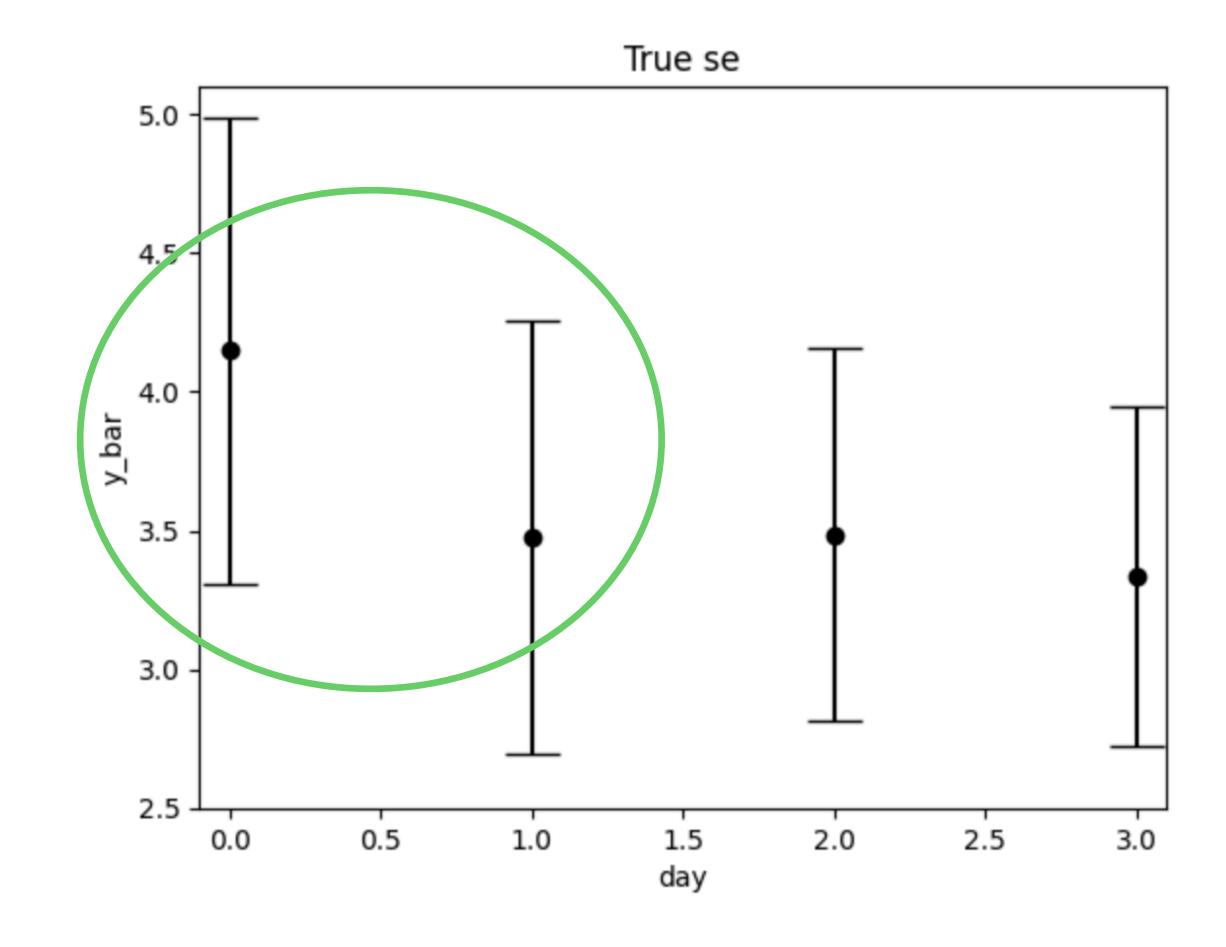
- $cov(y_i, y_i) = 0 \le independent$
- $E[y_i] = E[y_j]$, $var[y_i] = var[y_j]$, ... <== identically distributed

- $cov(y_i, y_j) = 0$ violations:
 - timeseries autocorrelation
 - correlated behavior across users
 - correlated behavior across stocks
- Common problem, big problem

Timeseries data are often autocorrelated. What could give rise to this? Gives examples.

• $cov(y_i, y_j) = 0$ violation





- $E[y_i] = E[y_j]$ violation
- Expectation can vary with
 - Yser, stock, time of day, day of week, genre of song, industry of stock, age of user, length of tweet, ... (confounders)
 - Transient effects (nonstationarity)
 - Passage of time (nonstationarity)
- When running an experiment we try to isolate the effect of A/B on y_i

- $var[y_i] = var[y_j]$ violation
- Called heteroscedasticity
- Variance can vary with
 - User, stock, time of day, day of week, genre of song, industry of stock, age of user, length of tweet, ...
 - Any feature that might predict y_i might also predict $var[y_i]$

What is a holdout test and what is it used for?

Validation of Results

- Replication: Measure again
- No other tricks
- Replication crisis: Independent re-experiments don't reproduce original https://en.wikipedia.org/wiki/Replication_crisis
- Avoid crisis

Validation of Results

- Industry replication techniques
- Reverse A/B: Switch to B, but run small portion as A for a while
- Holdout
 - Start of quarter: Fix a set of users, NE, no experimentation
 - During quarter: Monitor difference between NE and rest of users
 - Is the difference growing as expected?
 - End of quart: Run A/B test comparing NE to "all changes from this quarter"

Recap

- Underestimating se increases false positives
 - Look for non-overlapping error bars, autocorrelation
- Replication is the only check on results
 - Reverse A/B
 - Holdout

Evaluating results

Present to stakeholders

- Stakeholders
 - You
 - Your team
 - Other affected teams (ex., dependencies, tradeoffs)
- Usually evaluating multiple metrics (ex., revenue, clicks, time spent)
- Stakeholders may value metrics differently

Evaluating results

Approval

- Create an approval process to follow for each experiment, ex:
 - Present to stakeholders
 - Discuss
 - Final decision: manager, designated committee, vote (?)
 - Document decision (people disagree, forget)
- Standardized process helps remove experimenter bias, reduce conflict

A/B test presentation

Ad serving system

- You work on an ad-serving team for a website
- Your pages all show a single ad, the one with the highest predicted probability of getting a click
- You earn revenue when users click on ads
- You just completed an A/B test ...

- A: Currently displaying the one, best ad on each page
- B: Try displaying the two best ads on each page
- BM: Increase clicks/page
 - How? P{click on either of two} > P{click on just one}
- Guardrails: sessions/day, pages/session, time/session

session = one site visit, potentially multiple pages

- Design:
 - $\hat{\sigma}_{\delta} = 0.12$ (estimated from logs)
 - PS = 0.003 clicks/page (from data science group report, 2021Q4)

$$N > (\frac{2.5 \times \hat{\sigma}_{\delta}}{PS})^2 \sim 10,000$$

Need at least N = 10,000 pages

- Measurement:
 - Allocated 1% of users to A and 1% to B; randomly-chosen users
 - Ran for 5 days
 - Collected measurements from 10,452 sessions with A and 10,896 sessions with B
 - (!) Entire system was down for 1.5 hours on the second day

- Analysis:
 - A clicks/page = .017
 - B clicks/page = .021
 - $\delta = .004 \pm .0017$ clicks/page
 - t = 2.35

- Both criteria for switching to B are met
 - $\delta > PS = 0.003$
 - t > 1.64

• Guardrails: no change

	A	В
 sessions/day/user 	0.403 +/03	0.39 +/03
 pages/session 	2.2 +/015	2.4 +/013
• time/session	24.1s +/- 5.7s	22.1s +/- 5.9s

- Summary:
 - Clicks/page increases by 0.004 when we show two ads/page
 - This number is both statistically and practically significant
 - No guardrail metrics are worsened
- Recommendation: Show two ads/page

- Describe the system
 - ex., ad server, fraud detector, recommender system
- Describe the business metric
 - ex., revenue, fraud accuracy, user engagement
- What part of the system is being modified? ex., the ML predictor
- How was it modified? ex., a new feature was added
- How/why do you think your "version B" will improve the BM?

- How did you take an individual measurement?
 - One presentation of an ad, and Was it clicked?
 - One day's revenue
 - Time spent on your app by a single user in a single session
 - One presentation of a post, and Was it liked?
 - One play of a song, and Was it skipped?

- The value of N, the number of individual measurements you took
- How long should did it take to collect all N (ex., 1 week, 1 month)?
- How did you monitor the business metric(s)? (ex., a URL to a dashboard)
- What is PS? What was your rationale for choosing this value?
- How was σ_δ estimated?
- Display $\hat{\sigma}_{\!\delta'}$, PS, N

- How did you perform randomization?
 - Did you assign users (randomly) beforehand to "A" or "B"?
 - Did you randomly choose A or B on every event?
 - Did you randomly choose A or B at time intervals?
- Discuss possible confounders

- Were there any system problems during measurement?
 - System problems might introduce sampling or confounder bias
 - Ex: "West-cost system outage", sampling bias
 - Ex: B code failed on Monday, but was fixed; confounder bias if measurements from A on Monday are included

- Were there any broad-scale, unusual events during measurement?
 - COVID-19 discovered, markets go nuts
 - Election day, Twitter very active with election-specific tweets
 - · Taylor Swift releases new album on Spotify, activity is high and focused
 - Blackout on East Coast, activity is low for those users
- Measurement may not be a good predictor of "most of the time"
- May introduce sampling bias (in blackout case)

A/B test analysis

- Clearly define the business metric, BM, being used to evaluate this experiment
 - Ex: "pnl" not enough; "pnl measured daily at 4pm, net of exchange fees, marked to prices from Bloomberg" is better
 - Describe the in-house technology used to measure the business metric; "the Python function pnl_3a() in pnl_metrics.py"
- Display δ , t and conditions required to accept B

- Discuss other relevant business metrics even if not the one used to evaluate
- Would switching to B reduce other metrics, even if it increases BM?
 - Often the case
 - Ex: Users retweet more, but post less
 - Ex: Profit increases, but so does risk
- Stakeholders may value metrics differently
 - Ex: Ad team wants more ads shown, but song-recommender team wants more songs played

Summary

- Create an experimentation process to reduce bias and conflict
- Include all stakeholders in decision-making
- Presenting results:
 - Describe BM, guardrails, design (N), measurement (randomization)
 - Report unusual events / problems
 - Report analysis: δ , t, guardrails
 - Interpret and recommend an action